In the recent years, the use of textile structures made from high performance fibers is finding increasing importance in composites applications. In textile process, there is direct control over fiber placements and ease of handling of fibers. Besides economical advantages, textile technologies also provide homogenous distribution of matrix and reinforcing fiber. Thus textile performs are considered to be the structural backbone of composite structures. Textile technology is of particular importance in the context of improving certain properties of composites like inter-laminar shear and damage tolerance apart from reducing the cost of manufacturing. Textile industry has the necessary technology to weave high performance multifilament fibers such as glass, aramid and carbon, which have high tensile strength, modulus, and resistance to chemicals and heat into various types of preforms. Depending upon textile preforming method the range of fiber orientation and fiber volume fraction of preform will vary, subsequently affecting matrix infiltration and consolidation. As a route to mass production of textile composites, the production speed, material handling, and material design flexibility are major factors responsible for selection of textile reinforcement production. This opens a new field of technical applications with a new type of semifinished material produced by textile industry. Various types of hybrid yarns for thermoplastic composites and textile preforming methods have been discussed in detail in this issue. Information on manufacturing methods, structural details and properties of different hybrid yarns are presented and critically analyzed. Characterization methods used for these hybrid yarns have been discussed along with the influence of different processing parameters on the properties being characterized. The developments in all areas of textile preforming including weaving, knitting, braiding, stitching and nonwovens techniques are presented and discussed along with the characterization techniques for these preforms. The techniques used for manufacturing composites using hybrid yarns and textile preforms are discussed along with the details on compaction behavior of these structures during consolidation process. The structure of hybrid yarns and the textile preforms have direct influence on the properties of the composite made from them. The reported literature in this aspect is discussed in detail. In the end, the potential application areas and their trends for thermoplastic composites are discussed and analyzed.