Hybrid nanofluids are engaged in phase-change materials and thermal energy storage systems to enhance heat transfer during the charging and discharging processes. Improved understanding of how variable viscosity and thermal radiation affect these fluids contributes to more efficient energy management. This study aims to formulate an efficient mathematical model for the two-dimensional flow of a hybrid nanofluid composed of copper (Cu) and alumina oxide (Al2O3) suspended with base fluid H2O to form a hybrid fluid under the influence of thermal radiation. The present study also integrates the effects of variable viscosity and viscous dissipation. Electromagnetic radiation impact due to temperature also amalgamated. The governing PDEs are reformulated into ODEs via tailored similarity transformations. These reformulated equations are then numerically resolved using Bvp4c solver, leveraging the shooting method within MATLAB for precision and efficiency. The most significant results are predetermined relevant parameters, such as the prosperity parameter, magnetic parameter, radiation parameter, slip velocity parameter,Biot number, convention parameter, Eckert number, heat source parameter, Prandtl number on velocity and temperature distribution are inspected graphically and in the form of table. Outcomes illustrate that fluid velocity flattens by increasing magnetic parameters because there exists a Lorentz force that opposes the fluid motion, whereas enhancement is noted via radiation parameter. Compared to conventional nanofluid, temperature curves of hybrid nanoliquid is higher. Furthermore, recent results indicate strong agreement for a specific instance.
Read full abstract