Children's brains dynamically adapt to the stimuli from the internal state and the external environment, allowing for changes in cognitive and mental behavior. In this work, we performed a large-scale analysis of dynamic functional connectivity (DFC) in children aged 9~11 years, investigating how brain dynamics relate to cognitive performance and mental health at an early age. A hybrid independent component analysis framework was applied to the Adolescent Brain Cognitive Development (ABCD) data containing 10,988 children. We combined a sliding-window approach with k-means clustering to identify five brain states with distinct DFC patterns. Interestingly, the occurrence of a strongly connected state with the most within-network synchrony and the anticorrelations between networks, especially between the sensory networks and between the cerebellum and other networks, was negatively correlated with cognitive performance and positively correlated with dimensional psychopathology in children. Meanwhile, opposite relationships were observed for a DFC state showing integration of sensory networks and antagonism between default-mode and sensorimotor networks but weak segregation of the cerebellum. The mediation analysis further showed that attention problems mediated the effect of DFC states on cognitive performance. This investigation unveils the neurological underpinnings of DFC states, which suggests that tracking the transient dynamic connectivity may help to characterize cognitive and mental problems in children and guide people to provide early intervention to buffer adverse influences.
Read full abstract