This paper constructs the prediction intervals (PIs) of the tunnels’ settlement caused by the shielding steering process. The hybrid genetic algorithm -neural network (GA-NN) is developed to obtain the upper and lower bound of the settlement based on a series of shield operating parameters, geological condition parameters, tunnel geometric parameters, and anomalous conditions. An improved prediction interval-based cost function is proposed to enable the consideration of the uncertainty from model misspecification and noise variance. The genetic algorithm optimizes the weighted parameters in the neural network by minimizing the cost function value. This study adopts a metro tunnel construction case in China to verify the effectiveness of the proposed hybrid genetic algorithm-neural network approach. The results based on the study case illustrate the superiority of the proposed hybrid approach in (1) overcoming the limitations of the conventional prediction interval indicator; (2) achieving comparative results with the deterministic estimation based on the least squares support vector machine; (3) providing a probability prediction of the settlement only based on deterministic input multivariables. Overall, this study contributes to (1) the uncertainty assessment of tunnel settlement based on the deterministic variables, (2) developing a new PIs based cost function which is stable and reliable, (3) the engineering practice for a safer assessment based on the prediction intervals.
Read full abstract