The objective of the Hurricane Imaging Radiometer (HIRAD) is to produce wide-swath images of hurricane wind and rain fields during a single pass from a high-altitude aircraft. This instrument could be a prototype for the next generation of airborne hurricane remote sensors that operate on NOAA/USAF surveillance flights over named storms and hurricanes. The improved two-dimensional surface wind field measurements provided by the HIRAD approach are crucial to improved forecasts and warnings. For almost a decade, HIRAD has been used in research flights over hurricanes; however, because of various hardware issues, the scientific potential of its measurements has not been fulfilled. This paper presents a reanalysis of HIRAD measurements over Hurricane Gonzalo on 17 October 2014 that demonstrate remarkable results. The basis for this novel approach is to use coincident surface wind speed (WS) and rain rate (RR) measurements from another source to calibrate the HIRAD brightness temperature measurements. As a result, the HIRAD retrievals of WS and RR are in excellent agreement with the accompanying airborne remote sensors and in situ surface wind speed measurements, which validates the HIRAD technique proof of concept.
Read full abstract