This paper investigates an in situ, non-destructive detection sensor based on flexible wearable technology that can reflect the intensity of plant transpiration. The sensor integrates four components: a flexible substrate, a humidity-sensing element, a temperature-sensing element, and a self-adhesive film. It is capable of accurately and continuously measuring the temperature, humidity, and vapor pressure deficit (VPD) on the leaf surface, thus providing information on plant transpiration. We combined the humidity-sensitive material graphene oxide (GO) with a PDMS-GO-SDS flexible substrate as the humidity-sensing element of the sensor. This element exhibits high sensitivity, fast response, and excellent biocompatibility with plant interfaces. The humidity monitoring sensitivity of the sensor reaches 4456 pF/% RH, while the temperature sensing element has a sensitivity of approximately 3.93 Ω/°C. Additionally, tracking tests were conducted on tomato plants in a natural environment, and the experimental results were consistent with related research findings. This sensor can be used to monitor plant growth during agricultural production and facilitate precise crop management, helping to advance smart agriculture in the Internet of Things (IoT) for plants.
Read full abstract