Today, most humanoid mechanical fingers use an underactuated mechanism driven by linkages or tendons, with only a single and fixed grasping trajectory. This paper proposes a new multi-mode humanoid finger mechanism based on linkage and tendon fusion transmission, which is embedded with an adjustable-length tendon mechanism to achieve three types of grasping mode. The structural parameters of the mechanism are optimized according to the kinematic and static models. Furthermore, a discussion was conducted on how to set the speed ratio of the linkage driving motor and the tendon driving motor to adjust the length and tension of the tendon, in order to achieve the switching of the shape-adaptive, coupled-adaptive, and variable coupling-adaptive grasping modes. Finally, the multi-mode functionality of the proposed finger mechanism was verified through multiple grasping experiments.