Reliability evaluation results of a manufacturable 32-channel cochlear electrode array are reported in this paper. Applying automated laser micro-machining process and a layer-by-layer silicone deposition scheme, authors developed the manufacturing methods of the electrode array for fine patterning and mass production. The developed electrode array has been verified through the requirements specified by the ISO Standard 14708-7. And the insertion trauma of the electrode array has been evaluated based on human temporal bone studies. According to the specified requirements, the electrode array was assessed through elongation & insulation, flexural, and fatigue tests. In addition, Temporal bone study was performed using eight fresh-frozen cadaver temporal bones with the electrode arrays inserted via the round window. Following soaking in saline condition, the impedances between conducting wires of the electrode array were measured over 100 kΩ (the pass/fail criterion). After each required test, it was shown that the electrode array maintained the electrical continuity and insulation condition. The average insertion angle of the electrode array inside the scala tympani was 399.7°. The human temporal bone studies exhibited atraumatic insertion rate of 60.3% (grade 0 or 1). The reliability of the manufacturable electrode array is successfully verified in mechanical, electrical, and histological aspects. Following the completion of a 32-channel cochlear implant system, the performance and stability of the 32-channel electrode array will be evaluated in clinical trials.