trans-N-Caffeoyltyramine (TNC), which was isolated from the Cortex Lycii in our laboratory, is a phenolic amide compound with multiple pharmacological activities. The interaction between TNC and human serum albumin (HSA) was studied by Nuclear magnetic resonance (NMR) relaxation experiment, fluorescence spectroscopy, and docking simulation. NMR methodology is based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of TNC protons in the presence of the HSA. Result indicated that the interaction occurred between HSA and TNC, and changed the proton magnetic environment of TNC. Fluorescence spectroscopy confirmed that TNC displayed a strong capability to quench the fluorescence of HSA, and the acting forces for binding were hydrogen bonds and van der Waals forces. Furthermore, the circular dichroism, synchronous, and three-dimensional fluorescence spectra, which were employed to determine the conformation of protein, revealed that binding of TNC with HSA could induce conformational changes in HSA. In addition, the molecular modeling results exhibited that TNC mainly bonded to site I in sub-domain IIA of HSA.
Read full abstract