Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in various processes, including sperm maturation and cancer progression. They are mostly secreted glycoproteins and share a unique conserved CAP domain. The precise mode of action of these proteins, however, has remained elusive. Saccharomyces cerevisiae expresses three members of this protein family, which bind sterols in vitro and promote sterol secretion from cells. This sterol-binding and export function of yeast Pry proteins is conserved in the mammalian CRISP proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with alpha-1-B glycoprotein (A1BG), a human plasma glycoprotein that is upregulated in different types of cancers. Here we examined whether the interaction between CRISP proteins and A1BG affects the sterol-binding function of CAP family members. Co-expression of A1BG with CAP proteins abolished their sterol export function in yeast and their interaction inhibits sterol-binding in vitro. We map the interaction between A1BG and CRISP2 to the third of five repeated immunoglobulin-like (Ig) domains within A1BG. Interestingly, the interaction between A1BG and CRISP2 requires magnesium, suggesting that coordination of Mg2+ by the highly conserved tetrad residues within the CAP domain is essential for a stable interaction between the two proteins. The observation that A1BG modulates the sterol-binding function of CRISP2, has potential implications for the role of A1BG and related Ig domain containing proteins in cancer progression and the toxicity of reptile venoms containing CRISP proteins.