Sensitive, specific, and accurate detection of circulating tumor cells (CTCs) is of great importance in the diagnosis and prognosis of cancer. Herein, an ultrasensitive ratiometric electrochemical biosensor was designed with a dual recognition strategy for highly specific and accurate detection of circulating MCF-7 human breast cancer cells based on gold film-modified porous organic cages loaded with ferrocene (Au/Fc@POCs) as the substrate and methylene blue-encapsulated covalent organic frameworks (MB@COFs) as the label material, producing two independent electrochemical signals from the Fc and MB probes, respectively. As the concentration of MCF-7 cells increases, the electrochemical signal of MB enhances significantly while the oxidation signal of Fc decreases remarkably. Under optimal experimental conditions, the ratios (IMB/IFc) between the double signals showed a broad dynamic range of 10 to 1 × 107 cells/mL with an effectively lower detection limit of 1 cells/mL (S/N = 3). Furthermore, the biosensor was able to accurately enumerate MCF-7 cells in human serum samples with excellent results. In this work, the developed ratiometric electrochemical biosensor offers a reliable and sensitive strategy for the quantitative determination of circulating MCF-7 human breast cancer cells as well as an effective approach for the clinical detection of rare cancer cells, especially in early stage cancer diagnosis.