BACKGROUNDDiabetic retinopathy (DR) is a serious and potentially blinding complication of diabetes mellitus. Retinal neovascularization is one of the main pathological features of proliferative DR, and inhibiting retinal neovascularization is a research focus.AIMThe aim was to evaluate the effect of intravitreal injection of recombinant human maspin on neovascularization in DR.METHODSAn oxygen-induced retinopathy (OIR) mouse model was used to simulate neovascularization in DR. New born C57BL/6J mice were randomly divided to a normal control group, a maspin injection OIR group, and an OIR group. The mice in the maspin injection OIR group were injected with recombinant human maspin in the bilateral vitreous cavity on postnatal day P12, and those in the OIR group were injected with sterile phosphate buffered saline. The protein expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) in the retina was measured by western blotting, and the mRNA expression of VEGF and HIF-1α was measured by real-time polymerase chain reaction. The vascular cell nuclei that broke through the inner limiting membrane (ILM) were counted in haematoxylin-eosin stained retinal sections.RESULTSIt was found that the number of vascular cell nuclei breaking through the ILM was 31.8 ± 8.75 in the OIR group, which was significantly more than that in the normal control group (P < 0.001). The number of vascular cell nuclei breaking through the ILM was 6.19 ± 2.91 in the maspin injection OIR group, which was significantly less than that in OIR group (P < 0.01). The relative protein and mRNA expression of VEGF and HIF-1α was significantly lower in the retinas in the maspin injection OIR group than in those in the OIR group (P < 0.01).CONCLUSIONMaspin inhibited neovascularization in DR by modulating the HIF-1α/VEGF pathway, which provides a potential and effective strategy for the treatment of DR.