Purified natural (n) and recombinant (r) murine (mu) mast cell growth factor (MGF, a c-kit ligand) were evaluated alone and in combination with r human (hu) erythropoietin (Epo), rhu granulocyte-macrophage colony-stimulating factor (rhuGM-CSF), rhuG-CSF, and/or rhuM-CSF for effects in vitro on colony formation by multipotential (colony-forming unit-granulocyte, erythroid, monocyte, megakaryocyte [CFU-GEMM]), erythroid (burst-forming unit erythroid [BFU-E]) and granulocyte- macrophage (CFU-GM) progenitor cells from normal human bone marrow. MGF was a potent enhancing cytokine for Epo-dependent CFU-GEMM and BFU-E colony formation, stimulating more colonies and of a larger size than either rhu interleukin-3 (rhuIL-3) or rhuGM-CSF. MGF, especially at lower concentrations, also acted with rhuIL-3 or rhuGM-CSF to enhance Epo-dependent CFU-GEMM and BFU-E colony formation. MGF had little stimulating activity for CFU-GM colonies by itself, but in combination with suboptimal to optimal amounts of rhuGM-CSF enhanced the numbers and the size of CFU-GM colonies in an additive to greater than additive manner. While we did not detect an effect of MGF on CFU-G colony numbers stimulated by maximal concentrations of rhuG-CSF, MGF did enhance the size of CFU-G-derived colonies. MGF did not enhance the activity of rhuM-CSF. In a comparative assay, maximal concentrations of rmu and rhuMGF were equally effective in the enhancement of human bone marrow colony formation, but rhuMGF, in contrast to rmuMGF, did not at the concentrations tested enhance colony formation by mouse bone marrow cells. MGF effects on BFU-E, CFU-GM, and CFU-GEMM may be direct acting ones as MGF-enhanced colony formation by these cells in highly enriched progenitor cell populations of CD34 HLA-DR+ and CD34 HLA-DR+CD33- sorted cells in which greater than or equal to 1 of 2 cells was a BFU-E plus CFU-GM plus CFU-GEMM. MGF appears to be an early acting cytokine that preferentially stimulates the growth of immature hematopoietic progenitor cells.