Activation of multiple programmed cell death (PCD) pathways has been reported in cellular and animal studies of ischemia/reperfusion injury in lung transplantation. However, the status of these pathways in human lung transplants remains unknown. This study investigates the involvement of PCD pathways and their relationship with inflammation and signaling pathways in human lung transplants. Transcriptomic analysis was conducted on 54 paired human lung tissue samples at the end of cold preservation time and 2 h after reperfusion, collected between 2008 and 2011. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA were used to examine the activation of genes in 6 PCD pathways. The relationships between PCD pathways and inflammation, as well as signaling pathways, were assessed via single-gene GSEA. GSEA results indicated that apoptosis and necroptosis were significantly upregulated after reperfusion in human lung transplants, whereas the gene sets related to pyroptosis, ferroptosis, autophagy, and cuproptosis were not significantly upregulated. Notably, single-sample GSEA demonstrated an intricate interplay among pyroptosis, apoptosis, and necroptosis, collectively referred to as PANoptosis, which is further supported by enrichment of genes related to PANoptosome, inflammatory response, and nuclear factor-κB and interferon signaling pathways, via single-gene GSEA assays. This study demonstrated the genes of PANoptosis are upregulated in human lung grafts during reperfusion. The discovery of PANoptosis as an underlying mechanism of cell death in human lung grafts implies that effective therapeutics to prevent or reduce PANoptosis may alleviate ischemia/reperfusion injury and improve clinical lung transplant outcomes.
Read full abstract