Multiple drugs targeting the calcitonin gene-related peptide (CGRP) receptor have been developed for migraine treatment. Here, the effect of the monoclonal antibody erenumab on CGRP-induced vasorelaxation was investigated in human isolated blood vessels, as well as the effect of combining erenumab with the small molecule drugs, namely rimegepant, olcegepant, or sumatriptan. Concentration-response curves to CGRP, adrenomedullin or pramlintide were constructed in human coronary artery (HCA) and human middle meningeal artery (HMMA) segments, incubated with or without erenumab and/or olcegepant. pA2 or pKb values were calculated to determine the potency of erenumab in both tissues. To study whether acutely acting antimigraine drugs exerted additional CGRP-blocking effects on top of erenumab, HCA segments were incubated with a maximally effective concentration of erenumab (3μM), precontracted with KCl and exposed to CGRP, followed by rimegepant, olcegepant, or sumatriptan in increasing concentrations. Erenumab shifted the concentration-response curve to CGRP in both vascular tissues. However, in HCA, the Schild plot slope was significantly smaller than unity, whereas this was not the case in HMMA, indicating different CGRP receptor mechanisms in these tissues. In HCA, rimegepant, olcegepant and sumatriptan exerted additional effects on CGRP on top of a maximal effect of erenumab. Gepants have additional effects on top of erenumab for CGRP-induced relaxation and could be effective in treating migraine attacks in patients already using erenumab as prophylaxis.