Five hundred thirty-seven million people globally suffer from diabetes. Insulin-producing β cells are reduced in number in most people with diabetes, but most individuals still have some residual β cells. However, none of the many diabetes drugs in common use increases human β cell numbers. Recently, small molecules that inhibit dual tyrosine-regulated kinase 1A (DYRK1A) have been shown to induce immunohistochemical markers of human β cell replication, and this is enhanced by drugs that stimulate the glucagon-like peptide 1 (GLP1) receptor (GLP1R) on β cells. However, it remains to be demonstrated whether these immunohistochemical findings translate into an actual increase in human β cell numbers in vivo. It is also unknown whether DYRK1A inhibitors together with GLP1R agonists (GLP1RAs) affect human β cell survival. Here, using an optimized immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+) protocol in mouse kidneys bearing human islet grafts, we demonstrate that combination of a DYRK1A inhibitor with exendin-4 increases actual human β cell mass in vivo by a mean of four- to sevenfold in diabetic and nondiabetic mice over 3 months and reverses diabetes, without alteration in human α cell mass. The augmentation in human β cell mass occurred through mechanisms that included enhanced human β cell proliferation, function, and survival. The increase in human β cell survival was mediated, in part, by the islet prohormone VGF. Together, these findings demonstrate the therapeutic potential and favorable preclinical safety profile of the DYRK1A inhibitor-GLP1RA combination for diabetes treatment.
Read full abstract