Background: Inhaled anesthetic sevoflurane (SEVO) may induce cortical neurotoxicity and memory dysfunction in both animals and humans. In this study, we investigated the toxic effects of SEVO on human induced pluripotent stem cell (iPS)-derived neurons. Methods: Human iPS-derived neurons were exposed to SEVO in vitro. SEVO-induced toxic effects were examined with the viability, live caspase 3/7, and neurite density assays, respectively. The effects of SEVO on the receptors of the tyrosine kinases TrkA, TrkB, and TrkC were assessed by qRT-PCR. TrkA, TrkB, and TrkC were ectopically overexpressed in human iPS-derived neurons. Their functional effects on SEVO-induced human iPS-derived neuron toxicity were further investigated. Results: SEVO induced dose-dependent cell death, caspase 3/7 elevation, neurite degeneration, and the downregulation of Trk receptors in human iPS-derived neurons. Adenovirus-mediated Trk receptor overexpression selectively upregulated endogenous TrkA, TrkB, or TrkC gene expressions in human iPS-derived neurons. Specifically, TrkC overexpression, but not TrkA or TrkB overexpression was found to overcome the neurotoxic effects of SEVO in human iPS-derived neurons. Conclusions: SEVO may induce neurotoxicity in human iPS-derived neurons, and its neurotoxic damage could be protected by the overexpression of TrkC.
Read full abstract