BackgroundThe anterior lobe of the insular cortex (aINS) is a cortical region that has reciprocal connections with limbic centers such as the anterior cingulate cortex, prefrontal cortex, amygdala and nucleus accumbens (NAc). In fact, the aINS has been involved in the integration of autonomic information for emotional and motivational functions. The compulsive consumption of drugs or high-fat foods induces alterations at both behavioural and brain levels. Brain reward circuits are altered in response to continued intake, in particular the dopaminergic projections from the ventral tegmental area (VTA) to the NAc. The aINS has multiple connections with the components of this system. In recent years, efforts have been made to better understand the fundamental role of the aINS in addiction, making it one of the key centres of interest for research into new treatments for addiction. ObjectivesThe present work focuses on studying 1.- whether the human aINS expresses orexigenic peptides such as neuropeptide Y (NPY), a peptide known to induce hyperphagia, and which has been implicated in the onset and development of obesity, 2.- the long-term effect of an obesogenic diet on NPY expression in the aINS and NAc of C57BL/6 mice. MethodsA total of 17 female C57BL/6 J mice were used in this study. Female mice were fed ad libitum with water and, either a standard diet (SD) or a high-fat diet (HFD) to induce obesity. There were seven female mice on the SD and ten on the HFD. The duration of the experiment was 180 days. We also studied 3 human adult brains (1 male and 2 females, mean age 55.7 ± 5.2 years). The morphological study was performed using immunohistochemistry and double immunofluorescence techniques to study the neurochemical profile of NPY neurons of the aINS and NAc of humans and mice. ResultsOur morphological analysis demonstrates for the first time the basal expression of NPY in different layers of the human cortex (II, III, IV, V/VI), in a pattern similar to previous studies in other species. Furthermore, we observed an increase in the number of NPY-positive cells and their intracytoplasmic signal in the aINS and NAc of the obese mice subjected to a long-term obesogenic diet. ConclusionsTo our knowledge, this is the first study to show the distribution and expression of NPY in the human INS and how its expression is altered after prolonged treatment with an obesogenic diet in obese mice. Our findings may contribute to the understanding of the pathophysiological mechanisms underlying obesity in regions related to the reward system and associated with uncontrolled intake of high-fat foods, thus facilitating the identification of novel therapeutic targets.
Read full abstract