Histidine-rich glycoprotein (HRG) is a liver-produced protein circulating in human serum at high concentrations of around 125 μg/ml. HRG belongs to the family of type-3 cystatins and has been implicated in a plethora of biological processes, albeit that its precise function is still not well understood. Human HRG is a highly polymorphic protein, with at least five variants with minor allele frequencies of more than 10%, variable in populations from different parts of the world. Considering these five mutations we can theoretically expect 35 = 243 possible genetic HRG variants in the population. Here, we purified HRG from serum of 44 individual donors and investigated by proteomics the occurrence of different allotypes, each being either homozygote or heterozygote for each of the five mutation sites. We observed that some mutational combinations in HRG were highly favored, while others were apparently missing, although they ought to be present based on the independent assembly of these five mutation sites. To further explore this behavior, we extracted data from the 1000 genome project (n ∼ 2500 genomes) and assessed the frequency of different HRG mutants in this larger dataset, observing a prevailing agreement with our proteomics data. From all the proteogenomic data we conclude that the five different mutation sites in HRG are not occurring independently, but several mutations at different sites are fully mutually exclusive, whereas others are highly intwined. Specific mutations do also affect HRG glycosylation. As the levels of HRG have been suggested as a protein biomarker in a variety of biological processes (e.g., aging, COVID-19 severity, severity of bacterial infections), we here conclude that the highly polymorphic nature of the protein needs to be considered in such proteomics evaluations, as these mutations may affect HRG’s abundance, structure, posttranslational modifications, and function.
Read full abstract