Objectives: Cervical carcinoma (CC) is prevalent among women worldwide with increasing risk. Finding effective methods for treating CC is of utmost importance. The aim of this study was to investigate the effect of SERPINE1 on the progression of cervical precancerous lesions to CC. Design: This study used transcriptome sequencing and in vitro cell line. Participants/Materials: Cervical precancerous lesions and CC samples and human cervical epithelial immortalized cell line H8, human CC cell lines HeLa, and CaSki were involved in this study. Setting and Methods: Next-generation sequencing was applied to identify 100 differentially expressed genes from cervical precancerous lesions and CC samples. With the application of the Search Tool for the Retrieval of Interacting Genes (STRING) database, we carried out the protein-protein interaction network analysis, thus screening out serine protease inhibitor clade E member 1 (SERPINE1) with significant upregulation in CC cells. The helicase-like transcription factor (HLTF) was predicted as the upstream transcription factor using Human Transcription Factor Database (HumanTFDB). The chromatin immunoprecipitation (ChIP) experiment was conducted to validate the interaction between SERPINE1 and HLTF. The immunohistochemistry was employed to determine the expression of SERPINE1 and HLTF in CC tissues. Following the upregulation or downregulation of SERPINE1 and HLTF, the real-time quantitative reverse transcription polymerase chain reaction was carried out to assess mRNA expression levels of SERPINE1 and HLTF in cells. Cell viability, migration, and invasion were evaluated using MTT assay, cell scratch assay, and Transwell assay, respectively. Western blot analysis was conducted to assess changes in the expression levels of matrix metalloproteinases and proteins related to epithelial-mesenchymal transition (EMT). Results: The ChIP experiment confirmed the interaction between HLTF and SERPINE1. HLTF and SERPINE1 were upregulated in CC tissues and cells, and silencing SERPINE1 inhibited the EMT process and viability, migration, and invasion of CC cells. However, overexpression of SERPINE1 in CC cells showed the opposite trend. Rescue experiments demonstrated that silencing HLTF repressed CC cell viability, migration, and invasion, which could be restored by overexpressing SERPINE1. Limitations: The effect of the HLTF/SERPINE1 axis on CC malignant progression has not been confirmed by in vivo experiments. Conclusion: HLTF transcriptionally activates SERPINE1, promoting the progression from cervical precancerous lesions to CC.