Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.
Read full abstract