While connected and automated vehicle (CAV) platooning holds promise for enhancing traffic efficiency and reducing energy consumption, we still lack efficient algorithms for guiding the local movements of CAVs to form a platoon on a road due to significant computational and control challenges. This study addresses this gap by designing a real-time executable Hierarchical and Recursive Platoon Formation (HR-PF) framework tailored to mixed flow traffic conditions that encompass both Human-Driven Vehicles (HDV) and CAVs. The HR-PF framework comprises three hierarchical mathematical models (modules) designed to optimize platoon formation while considering both macroscopic traffic conditions and microscopic traffic safety. Module-I formulates a mixed integer quadratic program to determine the timing, location, and state of platoon formation. It is further extended to a mixed integer nonlinear program so that we can also select the optimal size of the target platoon. Module-II designs a Hybrid State-Lattice Motion planner to generate optimal trajectory references for CAVs to approach the target platoon state, ensuring microscopic traffic safety. Module-III develops longitudinal and lateral controllers to enable CAVs to track trajectory references accurately. These models function recursively at varying frequencies to balance mathematical rigor with practical application. Numerical experiments demonstrate that HR-PF facilitates efficient platoon formation in real-time across diverse traffic scenarios and road geometries while sustaining traffic efficiency. Furthermore, the performance of platoon formation is affected by surrounding traffic density and CAV penetrations, with prompt formation observed under LOS C and D traffic environments and slightly more traffic impacts under LOS E and F. These findings provide robust support for exploring advanced platoon formation and platooning strategies for CAVs under complicated traffic environments.
Read full abstract