Parkinson's disease (PD) is a common disorder that has, as part of its core pathology, the loss of the nigral dopaminergic nerve cells that project to the striatum. Replacing this loss with dopaminergic drugs has been the mainstay of therapy in PD for more than 50 years and while offering significant clinical benefit, especially in early-stage disease, leads to side effects over time. A conceptually more effective way to treat this aspect of the PD pathology would be to replace the missing dopaminergic system with grafts of new dopamine cells. This approach has been investigated for nearly 40 years using a variety of different dopamine cell sources. To date, a proof-of-principle has been shown using human fetal dopamine cells in patients with PD, but the more widespread adoption of this approach has been hampered by logistical reasons around tissue supply, the ethics of the cell source, and, most importantly, by the inconsistent results shown across trials, which in some cases have reported worrying side effects. Reasons for all this have been discussed extensively in the literature and one solution may lie in the development of new human stem cell-derived dopamine cells, which are now just entering first in human clinical trials.
Read full abstract