Emerging evidence suggests that viral infections may contribute to Alzheimer's disease (AD) onset and/or progression. However, the extent of their involvement and the mechanisms through which specific viruses increase AD susceptibility risk remain elusive. We used an integrative systems bioinformatics approach to identify viral-mediated pathogenic mechanisms, by which Herpes Simplex Virus 1 (HSV-1), Human Cytomegalovirus (HCMV), Epstein-Barr virus (EBV), Kaposi Sarcoma-associated Herpesvirus (KSHV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Influenza A Virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) could facilitate AD pathogenesis via virus-host protein-protein interactions (PPIs). We also explored potential synergistic pathogenic effects resulting from herpesvirus reactivation (HSV-1, HCMV, and EBV) during acute SARS-CoV-2 infection, potentially increasing AD susceptibility. Herpesviridae members (HSV-1, EBV, KSHV, HCMV) impact AD-related processes like amyloid-β (Aβ) formation, neuronal death, and autophagy. Hepatitis viruses (HBV, HCV) influence processes crucial for cellular homeostasis and dysfunction, they also affect microglia activation via virus-host PPIs. Reactivation of HCMV during SARS-CoV-2 infection could potentially foster a lethal interplay of neurodegeneration, via synergistic pathogenic effects on AD-related processes like response to unfolded protein, regulation of autophagy, response to oxidative stress, and Aβ formation. These findings underscore the complex link between viral infections and AD development. Viruses impact AD-related processes through shared and distinct mechanisms, potentially influencing variations in AD susceptibility.