Although most of chronic myeloid leukemia (CML) patients can be effectively treated by the tyrosine kinase inhibitors (TKIs), such as Imatinib, TKI-resistance still occurs in approximately 15-17% of cases. Although many studies indicate that branched chain amino acid (BCAA) metabolism may contribute to the TKI resistance in CML, the detailed mechanisms remains largely unknown. The cell proliferation, colony formation and in vivo transplantation were used to determined the functions of BCAT1 in leukemogenesis. Quantitative real-time PCR (RT-PCR), western blotting, RNA sequencing, BCAA stimulation in vitro were applied to characterize the underlying molecular mechanism that control the leukemogenic activity of BCAT1-knockdown cells. In this report, we revealed that branched chain amino acid transaminase 1 (BCAT1) is highly enriched in both mouse and human TKI-resistant CML cells. Leukemia was almost completely abrogated upon BCAT1 knockdown during transplantation in a BCR-ABLT315I-induced murine TKI-resistant CML model. Moreover, knockdown of BCAT1 led to a dramatic decrease in the proliferation of TKI-resistant human leukemia cell lines. BCAA/BCAT1 signaling enhanced the phosphorylation of CREB, which is required for maintenance of TKI-resistant CML cells. Importantly, blockade of BCAA/BCAT1 signaling efficiently inhibited leukemogenesis both in vivo and in vitro. These findings demonstrate the role of BCAA/BCAT1 signaling in cancer development and suggest that targeting BCAA/BCAT1 signaling is a potential strategy for interfering with TKI-resistant CML.