Periodontitis is a series of inflammatory processes caused by bacterial infection. Parathyroid hormone (PTH) plays a critical role in bone remodeling. The present study aimed to investigate the influences of PTH on human bone marrow mesenchymal stem cells (HBMSCs) pretreated with lipopolysaccharide (LPS). The proliferative ability was measured using cell counting kit-8 (CCK-8) and flow cytometry. The optimal concentrations of PTH and LPS were determined using alkaline phosphatase (ALP) activity assay, ALP staining, and Alizarin Red staining. Osteogenic differentiation was further assessed by quantitative reverse-transcription polymerase chain reaction (RT-qPCR), Western blot analysis, and immunofluorescence staining. PTH had no effects on the proliferation of HBMSCs. Also, 100 ng/ml LPS significantly inhibited HBMSC osteogenesis, while 10−9 mol/l PTH was considered as the optimal concentration to reverse the adverse effects. Mechanistically, c-Jun N-terminal kinase (JNK) phosphorylation was activated by PTH in LPS-induced HBMSCs. SP600125, a selective inhibitor targeting JNK mitogen-activated protein kinase (MAPK) signaling, weakened the effects of PTH. Taken together, the findings revealed the role and mechanism of PTH and JNK pathway in promoting the osteogenic differentiation of LPS-induced HBMSCs, which offered an alternative for treating periodontal diseases.
Read full abstract