New immune checkpoints are emerging in a bid to improve response rates to immunotherapeutic drugs. The adenosine A2A receptor (A2AR) has been proposed as a target for immunotherapeutic development due to its participation in immunosuppression of the tumor microenvironment. Blockade of A2AR could restore tumor immunity and, consequently, improve patient outcomes. Here, we describe the discovery of a potent, selective, and tumor-suppressing antibody antagonist of human A2AR (hA2AR) by phage display. We constructed and screened four single-chain variable fragment (scFv) libraries-two synthetic and two immunized-against hA2AR and antagonist-stabilized hA2AR. After biopanning and ELISA screening, scFv hits were reformatted to human IgG and triaged in a series of cellular binding and functional assays to identify a lead candidate. Lead candidate TB206-001 displayed nanomolar binding of hA2AR-overexpressing HEK293 cells; cross-reactivity with mouse and cynomolgus A2AR but not human A1, A2B, or A3 receptors; functional antagonism of hA2AR in hA2AR-overexpressing HEK293 cells and peripheral blood mononuclear cells (PBMCs); and tumor-suppressing activity in colon tumor-bearing HuCD34-NCG mice. Given its therapeutic properties, TB206-001 is a good candidate for incorporation into next-generation bispecific immunotherapeutics.
Read full abstract