ABSTRACT Resveratrol is converted to various metabolites by gut microbiota. Human and rat liver 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) are critical for glucocorticoid activation, while 11β-HSD2 in the kidney does the opposite reaction. It is still uncertain whether resveratrol and its analogues selectively inhibit 11β-HSD1. In this study, the inhibitory strength, mode of action, structure–activity relationship (SAR), and docking analysis of resveratrol analogues on human, rat, and mouse 11β-HSD1 and 11β-HSD2 were performed. The inhibitory strength of these chemicals on human 11β-HSD1 was dihydropinosylvin (6.91 μM) > lunularin (45.44 μM) > pinostilbene (46.82 μM) > resveratrol (171.1 μM) > pinosylvin (193.8 μM) > others. The inhibitory strength of inhibiting rat 11β-HSD1 was pinostilbene (9.67 μM) > lunularin (17.39 μM) > dihydropinosylvin (19.83 μM) > dihydroresveratrol (23.07 μM) > dihydroxystilbene (27.84 μM) > others and dihydropinosylvin (85.09 μM) and pinostilbene (>100 μM) inhibited mouse 11β-HSD1. All chemicals did not inhibit human, rat, and mouse 11β-HSD2. It was found that dihydropinosylvin, lunularin, and pinostilbene were competitive inhibitors of human 11β-HSD1 and that pinostilbene, lunularin, dihydropinosylvin, dihydropinosylvin and dihydroxystilbene were mixed inhibitors of rat 11β-HSD1. Docking analysis showed that they bind to the steroid-binding site of human and rat 11β-HSD1. In conclusion, resveratrol and its analogues can selectively inhibit human and rat 11β-HSD1, and mouse 11β-HSD1 is insensitive to the inhibition of resveratrol analogues.
Read full abstract