The ferritic-martensitic steel HT9 is a candidate material for fuel cladding and core components in advanced nuclear reactors, such as sodium-cooled fast reactors, thanks to their high temperature mechanical properties and low susceptibility to irradiation induced swelling phenomena. However, thermal stability and elevated temperature microstructural evolution in these alloys may impact their long-term behavior and reliability. In this work, the effects of thermal aging on the microstructural and mechanical properties of HT9 have been investigated through complementary electron microscopy, synchrotron X-ray diffraction, microhardness, and thermodynamic modeling. Plates of HT9 were aged up to 50 kh at relevant sodium-cooled fast reactor operational temperatures (360 °C - 700 °C). Trends in microstructure as a function of aging time and temperature were apparent from qualitative and quantitative analysis. These observations were further supported by thermodynamic modeling of the bulk and precipitate phases. Specific phases observed include BCC Fe, FCC M23C6, HCP and FCC MX phase and Laves M2X phase. Through the application of our multi-scale and multi-modal approach, clear information on the aging mechanism of HT9 was obtained, allowing for a more informed prediction, and understanding of the long-term behavior, performance and thermal stability of ferritic-martensitic alloys exposed to elevated temperatures.
Read full abstract