ABSTRACTContamination of cereal grain, especially wheat, with fungal infections can cause significant economic impacts and it endangers the health of humans and livestock. This study aims to appraise the UV/VIS–NIR and digital color (RGB) imaging systems and spectroscopic methodology to detect wheat kernels infected by fungi such as Penicillium expansum and Fusarium graminearum. NIR spectra of 190–1100 nm at 10 nm intervals, visible color reflectance images and non‐visible reflectance images of wheat kernels in the ultraviolet and near‐infrared ranges were applied to develop the multi‐layer perceptron (MLP) artificial neural network model. The optimum wavelengths were selected by application of the principal component analysis (PCA) after preprocessing the raw spectra. A confusion matrix was used in the correlation feature selection method (CFS) for the decision tree classifier of selected features. The results showed that the four UV wavelengths of 310, 330, 400, and 410 nm were the best wavelengths using PCA to distinguish healthy and unhealthy wheat kernels. Considering the intensity of the wavelengths as the neural network inputs, samples were classified into healthy and unhealthy categories with an accuracy of 90.9%. Also, 18 features of color images in RGB, LAB, HSV, HSI, YCbCr, and YIQ spaces provided the highest average accuracy of 44.4% in classifying healthy and infected wheat kernels by using a CCD Proline camera in the ultraviolet range. In contrast, other cameras in the visible and invisible range showed low accuracy. Furthermore, the best classification accuracy of the healthy and infected samples by the use of the CFS method was obtained at 88.1%. Based on the findings, spectroscopic methodology proved to be highly effective for detecting, classifying and automatic cleaning of various agricultural seeds, with a particular emphasis on wheat kernals.
Read full abstract