The practical application of Li-CO2 batteries is significantly hindered by high charge potential and short lifespan, mainly due to sluggish reaction kinetics and inadequate reaction reversibility. Homogeneous catalysts added to the electrolyte provide a promising strategy to address these issues. In this work, the third-generation Grubbs catalyst (G-III), which is efficient for olefin metathesis reactions, has been adopted as a homogeneous catalyst for Li-CO2 batteries. Batteries with G-III exhibited a low overpotential of 0.86 V and a lifespan of 1300 h at a current density of 300 mA g-1. Even at a high current density of 2000 mA g-1, the batteries remained stable for over 300 cycles, with an initial overpotential of 1.11 V. A two-step discharge/charge reaction involving Li2C2O4 as an intermediate was well illustrated, attributed to both low overpotentials and high specific capacity. These findings provide insights into catalyst selection and mechanism analysis for Li-CO2 batteries, offering practical strategies for Li-CO2 battery performance enhancement and practical applications.
Read full abstract