Splits are delaminations that may appear perpendicular to the crack plane during fracture toughness tests of certain materials, such as hot-rolled metal alloys. X-ray computed tomography (CT) was used to conduct a 3D analysis of the geometrical and morphological characteristics of the splits in SE(B) specimens machined from a DH36 steel. Tomograms and 3D reconstructions of the CT results were compared with high-resolution images obtained through optical microscopy (OM) and scanning electron microscopy (SEM). Quantitative and qualitative comparisons revealed a good agreement between the results, validating the split characterization by CT. It was discussed whether characterizing the splits just by the routinary fracture surface observation conducted in fracture mechanics specimens can hide important phenomena such as plane changes, branching, and interactions between delaminations. On the other hand, CT enables an accurate and comprehensive characterization of the morphological and geometrical attributes of splits. Contrasts between the analysis and characteristics of deformed and undeformed splits were made. Finally, the limitations and challenges of the 3D split characterization by CT were also discussed, exploring experimental and image processing issues. These findings emphasize that a more thorough understanding of the internal structure of splits can be achieved by applying CT analysis, contrasting with traditional fracture surface examination. This study highlights the relevance of CT in revealing hidden complexities within the internal structure of specimens with splits.
Read full abstract