Tanna, one of the southernmost islands of the New Hebrides volcanic arc, is made of Late Pliocene to Recent island arc tholeiitic basalts and andesites, with SiO2 contents ranging from 45 to 57%. These lavas are highly porphyritic (30–50% in volume): phenocrysts of plagioclase are the most abundant, together with olivine and clinopyroxene. The groundmass contain plagioclase, augite, olivine, magnetite and glass; pigeonite, tridymite, sanidine and, rarely, biotite may also occur. The olivines and clinopyroxenes show an iron enrichment from the cores of phenocrysts to their rims and the groundmass crystals, but their compositional variations are not correlated with the Mg/Fe ratio of bulk host rocks, the most Fe-rich compositions being found in Mg-rich lavas. Plagioclase compositions range from An95 to An60 in the basalts and An60 to An50 in the andesites, but, within each group, they are not correlated with SiO2 or Na2O contents of host lavas. Consequently, the bulk major element compositions of Tanna volcanic rocks cannot be considered as primarily controlled by crystal separation from successive liquids. The oxyde-SiO2 variations diagrams, and the modal compositions and mineral chemistry show that crystal accumulation is the predominant mechanism accounting for bulk rock compositions. However, this does not exclude fractional crystallization: the variation of the calculated groundmass mineralogy strongly suggest the occurrence of crystal removal mainly clinopyroxene and magnetite.
Read full abstract