In view of the construction technology and formation deformation of the existing rivers under the subway shield interval tunnel, relying on Zhengzhou rail transit line 17 shield tunnel through the south-north water transfer channel project, using the trial tunneling method of shield tunnel test section to optimize all kinds of construction parameters, and the formation analysis and calculation of the determined digging pressure, noting the final parameters that are determined by comparison between the extractive parameters such as pulp pressure, and they are used in MIDAS GTS/NX finite unit analysis software for numerical simulation analysis, combined with on-site testing, to study the variation of different depth formation subsidence values and horizontal displacement values when passing through the south-north water transfer canal under water conditions, and put forward the reinforcement scheme of shield tunneling through the general river bed and hole. The results show that the maximum subsidence of the trunk canal shield through the bottom is 11.3 mm, and the verification parameters are reasonable and feasible. The horizontal subsidence trough of the soil above the over-soil layer at the top of the main canal embankment is distributed by Gauss. The sinking distribution can be estimated using the Peck formula, the middle of the layer subsidence trough is distributed horizontally, and the soil subsidence trough below it is inverted hump-like distribution, with the peak point directly above the center line of the two tunnels, and the vertical zero horizontal displacement surface is located in the middle line position between the two tunnels, and the horizontal zero horizontal displacement surface is located. The horizontal displacement curve of the soil layer above the soil layer is inverted S-type, the maximum displacement appears at the anti-bending point of the surface sedimentation trough curve, the horizontal displacement curve of the soil layer on the horizontal zero horizontal displacement surface is zero, and the lower soil layer curve is double-inverted S-shaped. In the construction, we should pay attention to the monitoring of the vertical subsidence and horizontal displacement of the deep soil, adjust the shield parameters and reduce the horizontal and vertical shearing effect of the deep soil on the surrounding pipeline, inner pile base and other structures during the construction of the shield.
Read full abstract