Skirted foundations are critical components in offshore applications where combined loads are common in deep‐water environments. Their ultimate capacity under VH (vertical‐horizontal) combined loading is traditionally determined using VH failure envelopes, which are primarily constructed using numerical methods. These methodologies, however, frequently ignore the spatial variability inherent in seabed soils due to geological formations. This paper investigates the effect of spatial variability of undrained shear strength and embedment ratio impact on the capacity of skirted foundations subjected to VH combined loading. For this, OptumG2 software is used to perform Monte Carlo simulation combined with random finite element limit analysis. This paper investigates the stochastic analysis of bearing capacity and failure envelopes, with a particular emphasis on understanding the effect of spatial correlation on undrained shear strength. The study focuses on the horizontal scale of fluctuation and the soil strength heterogeneity index, shedding insight on previously undiscovered areas. Novel findings highlight how a rigid base affects VH failure envelopes and offer insights into evaluating the vertical bearing capacity of skirted foundations. [Correction added on 8 July 2024, after first online publication: The above statement has been updated in this version.]