This study examined the influence of metal artifact reduction (MAR), the application of sharpening filters, and their combination on the diagnosis of horizontal root fracture (HRF) in teeth adjacent to a zirconia implant on cone-beam computed tomography (CBCT) examinations. Nineteen single-rooted teeth (9 with HRF and 10 without) were individually positioned in the right central incisor socket of a dry human maxilla. A zirconia implant was placed adjacent to each tooth. Imaging was performed using an OP300 Maxio CBCT (Instrumentarium, Tuusula, Finland) unit with the following settings: a current of 8 mA, both MAR modes (enabled and disabled), a 5×5 cm field of view, a voxel size of 0.085 mm, and a peak kilovoltage of 90 kVp. Four oral and maxillofacial radiologists independently evaluated the CBCT scans under both MAR conditions and across 3 levels of sharpening filter application (none, Sharpen 1×, and Sharpen 2×). Diagnostic metrics were calculated and compared using 2-way analysis of variance (α=5%). The weighted kappa test was used to assess intra- and inter-examiner reliability in the diagnosis of HRF. MAR tool activation, sharpening filter use, and their combination did not significantly impact the area under the receiver operating characteristic curve, sensitivity, or specificity of HRF diagnosis (P>0.05). Intra- and inter-examiner agreement ranged from fair to substantial. The diagnosis of HRF in a tooth adjacent to a zirconia implant is not affected by the activation of MAR, the application of a sharpening filter, or the combination of these tools.
Read full abstract