Through classical molecular dynamics computational simulations, the surface of amorphous silica (vitreous silica) was generated for a system comprising 64 SiO2 molecules (192 atoms) via the classical three-body glass potential. Starting from the liquid state of silica at 3400 K, it was cooled in three different ways at intervals of 200, 400, and 2000 K, with a cooling rate of 4.4 K/ps and establishing relaxation at intermediate temperatures, yielding three groups of surfaces from 3400 to 1400 K. Subsequently, these systems underwent sudden cooling from 1400 to 300 K via the Andersen and Nosé‒Hoover thermostats, followed by relaxation at 300 K via a microcanonical ensemble (NVE constant). Each surface that underwent relaxation was analyzed through ab initio molecular dynamics for the following three physical properties, which are temperature dependent. The average electric charges of oxygen and silicon. Microstructures on the outermost part of the surface were observed and comprised nonbridging oxygen atoms, undercoordinated silicon, and N-membered rings (3 ≤ N ≤ 5). The radial distribution functions were analyzed for all surfaces. Below 2000 K, a type of freezing is observed in all the structures because of the glass transition. All analyses were performed at zero pressure.
Read full abstract