The stimulator of interferon genes (STING) is a central and multifaceted mediator in innate immunity, and plays vital roles in defending against pathogen infection. In this study, we identified and functionally characterized the STING homolog from the Chinese giant salamander Andrias davidianus (AdSTING) for the first time. The open reading frame of AdSTING encodes a 362 amino acid protein with a predicted molecular mass of 41.6 kDa, which shares 31.1–46.7% of its sequence identity with STING homologs in other vertebrates. Structural analysis revealed that AdSTING possesses four predicted transmembrane domains (TMs) at the N-terminal, and a C-terminal domain (CTD) featuring a dimerization domain (DD), a c-di-GMP-binding domain (CBD), and a short C-terminal tail (CTT). Tissue distribution analysis showed that AdSTING mRNA was ubiquitously expressed in all examined tissues, with abundant expression in muscles, intestine, and thymus. During Andrias davidianus ranavirus (ADRV) infection, significant up-regulation of AdSTING expression was observed in the thymus, spleen, and kidney. Upon different stimuli in vitro, the expression of AdSTING was significantly induced by ADRV infection or polyinosin-polycytidylic acid (poly I:C) stimulation, but no obvious changes were observed during lipopolysaccharide (LPS) stimulation. Subcellular localization analysis revealed that AdSTING mainly localized in the cytoplasm in the Chinese giant salamander thymus cell line (GSTC) and co-localized with the endoplasmic reticulum (ER). Luciferase reporter assays confirmed the ability of AdSTING to activate the interferon-stimulated response element (ISRE) and interferon (IFN) promoter. Furthermore, overexpression of AdSTING effectively decreased ADRV infection, as evidenced by the reduction of virus titers and viral gene expression. Collectively, our findings underscore the pivotal role of AdSTING in the antiviral innate immunity of the Chinese giant salamander, offering insights into the functional evolution of STING in amphibians.