Cleaning painted surfaces of their grime, aged varnishes, and discolored overpaint is one of the most common interventive treatments for art conservators. Carefully concocted solvent mixtures navigate the solubility differences between the material removed and the original paint underneath. However, these solutions may be altered by differential evaporation rates of the component solvents (zeotropic behavior), potentially leading to ineffectively weak cleaning or conversely overly strong residual liquid capable of damaging the underlying paint. Azeotropic solvent blends, which maintain a constant composition during evaporation, offer a promising solution. These blends consist of two or more solvents combined at precise concentrations to function as a single solvent. Additionally, pressure-maximum azeotropes feature higher vapor pressure compared to other mixtures, further minimizing contact time and sorption of the solvents into artworks. This study examines azeotropes of isopropanol with n-hexane and 2-butanone in cyclohexane, which have been used previously in art conservation. The evaporation behavior at room temperature of these boiling point azeotropes was assessed using vapor pressure measurements, refractive index determinations, gravimetric analysis, and gas chromatography. Results showed changes in composition during evaporation and found that the actual room temperature azeotropic composition can vary between 1 and 10% v/v in concentration with those commonly reported at their boiling points. Art conservators should be cautious when using azeotropic blends reported at boiling points significantly higher than room temperature. To ensure the safety and efficacy of these mixtures, it is recommended to determine individual azeotropic cleaning blends experimentally before their use.