Herein, we reported the effect of electron withdrawing units, such as trifluoromethyl (CF3) and cyanide (CN), substitution on a thermally activated delayed fluorescent (TADF) molecule (10-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl)-10H-phenoxazine (PXZ-OXD)). The addition of electron withdrawing units has increased the acceptor strength and reduced the interaction between PXZ and OXD, thus reducing the gap between the singlet and triplet states (ΔEST) of excitons. To understand the variation in the acceptor strength of PXZ-OXD as a function of its molecular structure and density of states, density functional theory (DFT) and time-dependent DFT (TDDFT) were conducted. Transition density matrix investigations revealed that the addition of −CF3 and –CN to PXZ-OXD triggers CT excitons, while inducing lower ΔEST values. Particularly, the lowest ΔEST (0.05 eV) with a notable red shift in the emission spectrum was observed with 4′-CF3PXZOXD. The delayed component lifetime of PXZOXD is found to be reduced after the substitution of −CNwhm and −CF3. Despite the weak charge transfer transitions, the substitution of conjugative –CN group is found to be beneficial in improving the HOMO-LUMO overlap with a moderate decrease in reverse intersystem crossing (KRISC), which attained enhancement in the photoluminescent quantum yield. Additionally, the substitution of the above electron withdrawing units on PXZ-OXD yielded a red shift in the electroluminescence spectrum. Furthermore, the external quantum efficiency (at 100 cd/m2, i.e., EQE100) of the 4′-CNPXZOXD-based organic light-emitting diode is found to improve by 21.13 % against the PXZOXD (16.9 %).