Background: Microwave synthesis has developed as a powerful tool for the cost-effective and greener synthesis of organic molecules, including quinazolines. Irradiation with microwave leads to the excitation of molecules and equitable distribution of thermal energy in a much shorter time than conventional synthesis. This results in shorter reaction time and, more often than not, higher efficiency Objective: The primary objective of the work presented in this article was to prepare hydrazine hydrate or thiourea derivative of quinazolines through microwave synthesis as small-molecule scaffolds for fur-ther need-based functionalisation, isolation, and characterisation. We, herein, report the synthesis of two quinazolinone derivatives of thiourea and hydrazine, 3-amino-2-phenylquinazolin-4(3H)-one (QH) and 4-oxo-2-phenylquinazoline-3(4H)-carbothioamide (QTh), respectively. Method: A multi-step synthetic strategy starting from anthranilic acid was employed to synthesise the small molecule quinazolinones 3-amino-2-phenylquinazolin-4(3H)-one (QH) and 4-oxo-2-phenylquinazoline-3(4H)-carbothioamide (QTh). The compounds were synthesised by reacting hydra-zine and thiourea with 2-benzamidobenzoyl chloride in DMF under microwave irradiation (800 W at 135 °C for 4 min) in the presence of potassium carbonate. The acid chloride was prepared by chlorination of 2-benzamidobenzoic acid, which in turn was synthesised from anthranilic acid by benzoylation. This method is an efficient alternative approach to synthesising quinazolinones from benzoxazin-4-ones. Results: We have successfully synthesised, isolated, and characterised the quinazolinone derivative QH (yield: 81%) and QTh (yield: 85%). The structures of the compounds were established through spectro-scopic techniques. Theoretical optimisation of the structures was also achieved using DFT. The HOMO-LUMO difference for QH and QTh was calculated to be 4.60 and 4.47 eV, respectively. Conclusion: The reported protocol is advantageous over conventional methods of quinazoline synthesis from benzoxazin-4-ones. The time required for the reaction is much less (4 min) as compared to the usual requirements of reflux (> 4 h); the higher energy gap of QH indicates greater stability than that of QTh.