Due to the accelerated growth of the world’s population, food security and sustainable agricultural practices have become essential. The incorporation of Artificial Intelligence (AI)-enabled robotic systems in cultivation, especially in greenhouse environments, represents a promising solution, where the utilization of the confined infrastructure improves the efficacy and accuracy of numerous agricultural duties. In this paper, we present a comprehensive autonomous navigation architecture for holonomic mobile robots in greenhouses. Our approach utilizes the heating system rails to navigate through the crop rows using a single stereo camera for perception and a LiDAR sensor for accurate distance measurements. A finite state machine orchestrates the sequence of required actions, enabling fully automated task execution, while semantic segmentation provides essential cognition to the robot. Our approach has been evaluated in a real-world greenhouse using a custom-made robotic platform, showing its overall efficacy for automated inspection tasks in greenhouses.
Read full abstract