Hollow microspheres with pores in their shells have received much attention owing to their hierarchically porous structures and advanced applications in electrochemical capacitive energy storage, hydrogen storage, drug delivery, sensing, and catalysis. For example, Lou et al. reported that hollow SnO2 nanospheres with nanoporous shells showed high reversible charge capacity and good cycling performance. Zhu et al. investigated the drug-delivery properties of hollow silica spheres with mesoporous shells and found that the hollow microspheres were able to store significantly more molecules with higher release rates than conventional mesoporous silica. Template synthesis is one of the most-used strategies to prepare hierarchically hollow microspheres, especially for pores inside the shells. Braun and co-workers have prepared hollow ZnS microspheres with mesoporous shells using dual templates assembled by lyotropic liquid crystals on the surfaces of silica or polystyrene colloidal templates. Liu et al. have produced organic–inorganic hybrid hollow nanospheres with microwindows on the shells templated by tricopolymer aggregates. The template method is general to prepare hollow microspheres with pores in the shells, but expensive and tedious post-treatment processes, such as solvent extraction, thermal pyrolysis, or chemical etching, and resultant fragile frameworks, limit or even impair its applicability. 3, 4] As a result, it remains an important challenge to develop a convenient and template-free method to prepare hollow microspheres with porous shells. Porous coordination polymers are highly ordered porous multifunctional materials prepared by linking metal ions or metal oxide clusters with multidentate organic ligands without any additional template. Construction of shells of hollow materials with porous coordination polymers is an especially promising approach to design hollow microspheres with porous shells through a template-free method and to endow materials with multifunctionality, such as electric, magnetic, and optical properties. Herein, we report the formation of hollow coordination polymer microspheres with microporous shells by a one-pot solvothermal reaction without any additional template; the shells are constructed of iron-based ferrocenyl coordination polymers. We confirm that the Ostwald ripening mechanism is responsible for the formation of hollow cavities with controllable size. Hollow iron-based ferrocenyl coordination polymer microspheres (Fe-Fc-HCPS) were synthesized by a solvothermal reaction of FeCl3·6H2O with 1,1’-ferrocenedicarboxylic acid (H2FcDC) in N,N-dimethyl formamide (DMF; Figure 1a). The precipitate was collected by centrifugation and washed several times with DMF and CHCl3. The reaction temperature, reaction time, and molar ratio of reactants play important roles in the formation of hollow spherical particles. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and optical microscopy (OPM) were
Read full abstract