During the aging process, elastin is degraded and the level of elastin-derived peptides (EDPs) successively increases. The main peptide released from elastin during its degradation is a peptide with the VGVAPG sequence. To date, several papers have described that EDPs or elastin-like peptides (ELPs) affect human mesenchymal stem cells (hMSCs) derived from different tissues. Unfortunately, despite the described effect of EDPs or ELPs on the hMSC differentiation process, the mechanism of action of these peptides has not been elucidated. Therefore, the aim of the present study was to evaluate the impact of the VGVAPG and VVGPGA peptides on the hMSC stemness marker and elucidation of the mechanism of action of these peptides. Our data show that both studied peptides (VGVAPG and VVGPGA) act with the involvement of ERK1/2 and c-SRC kinases. However, their mechanism of activation is probably different in hMSCs derived from adipose tissue. Both studied peptides increase the KI67 protein level in hMSCs, but this is not accompanied with cell proliferation. Moreover, the changes in the NANOG and c-MYC protein expression and in the SOX2 and POU5F1 mRNA expression suggest that EDPs reduced the hMSC stemness properties and could initiate cell differentiation. The initiation of differentiation was evidenced by changes in the expression of AhR and PPARγ protein as well as specific genes (ACTB, TUBB3) and proteins (β-actin, RhoA) involved in cytoskeleton remodeling. Our data suggest that the presence of EDPs in tissue can initiate hMSC differentiation into more tissue-specific cells.
Read full abstract