HLA-DQ molecules drive unwanted alloimmune responses after solid-organ transplants and several autoimmune diseases, including Type1 Diabetes and celiac disease. Biologics with HLA molecules as part of the design are emerging therapeutic options for these allo- and autoimmune conditions. However, the soluble α and β chains of class II HLA molecules do not dimerize efficiently without their transmembrane domains, which hinders their production. In this study, we examined the feasibility of inter-chain disulfide engineering by introducing paired cysteines to juxtaposed positions in the α and β chains of HLA-DQ7, encoded by HLA-DQA1*05:01 and HLA-DQB1*03:01 respectively. We identified three variant peptide-HLA-DQ7-Fc fusion proteins (DQ7Fc) with increased expression and production yield, namely Y19C-D6C (YCDC), A83C-E5C (ACEC), and A84C-N33C (ACNC). The mutated residues were conserved across all HLA-DQ proteins and had limited solvent exposure. Further characterizations of the YCDC variant showed that the expression of the fusion protein is peptide-dependent; inclusion of a higher-affinity peptide correlated with increased protein expression. However, high-affinity peptide alone was insufficient for stabilizing the DQ7 complex without the engineered disulfide bond. Multiple DQ7Fc variants demonstrated expected binding characteristics with commercial anti-DQ antibodies in two immunoassays and by a cell-based assay. Lastly, DQ7Fc variants demonstrated dose-dependent killing of DQ7-specific B cell hybridomas in a flow cytometric, complement-dependent cytotoxicity assay. These data support inter-chain disulfide engineering as a novel approach to efficiently producing functional HLA-DQ molecules and potentially other class II HLA molecules as candidate therapeutic agents.
Read full abstract