Diffuse pleural mesotheliomas (DPM) with genomic near-haploidization (GNH) represent a novel subtype first recognized by The Cancer Genome Atlas project; however, its clinicopathologic and molecular features remain poorly defined. We analyzed clinical genomic profiling data from 290 patients with DPM using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay. Allele-specific copy number analysis was performed using the Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) algorithm. A total of 210 patients were evaluable for loss of heterozygosity (LOH) analysis using FACETS from MSK-IMPACT tumor:normal sequencing data. In this cohort, GNH, defined as LOH across >80% of the genome, was detected in 10 cases (4.8%). Compared with non-GNH tumors, GNH DPMs were associated with younger age and less frequent self-reported history of occupational asbestos exposure. Histologically, GNH DPMs were enriched in biphasic subtype (80% vs. 14.5%) and showed abundant tumor-infiltrating lymphocytes (TILs). Genomic analysis revealed a higher frequency of TP53 alterations, whereas SETDB1 mutations were present in nearly all and only in this subset. The clinicopathologic and molecular findings were further validated in a separate cohort. Despite the younger age, patients with GNH DPMs had a shorter overall survival (10.9 vs. 25.4 months, P = 0.004); the poor prognostic impact of GNH remained significant after controlling for biphasic histology. Of three patients with GNH DPMs who received immune checkpoint blockade, two achieved a clinician-assessed partial response. GNH defines an aggressive subtype of mainly biphasic DPMs in younger patients with recurrent alterations in SETDB1 and TP53. The enrichment in biphasic histology and TILs, together with our preliminary immune checkpoint blockade response data and anecdotal clinical trial data, suggests that further evaluation of immunotherapy may be warranted in this subset.
Read full abstract