This review examines the significant influence of Digital Twins (DTs) and their variant, Digital Human Twins (DHTs), on the healthcare field. DTs represent virtual replicas that encapsulate both medical and physiological characteristics—such as tissues, organs, and biokinetic data—of patients. These virtual models facilitate a deeper understanding of disease progression and enhance the customization and optimization of treatment plans by modeling complex interactions between genetic factors and environmental influences. By establishing dynamic, bidirectional connections between the DTs of physical objects and their digital counterparts, these technologies enable real-time data exchange, thereby transforming electronic health records. Leveraging the increasing availability of extensive historical datasets from clinical trials and real-world sources, AI models can now generate comprehensive predictions of future health outcomes for specific patients in the form of AI-generated DTs. Such models can also offer insights into potential diagnoses, disease progression, and treatment responses. This remarkable progression in healthcare paves the way for precision medicine and personalized health, allowing for high-level individualized medical interventions and therapies. However, the integration of DTs into healthcare faces several challenges, including data security, accessibility, bias, and quality. Addressing these obstacles is crucial to realizing the full potential of DHTs, heralding a new era of personalized, precise, and accurate medicine.