We determined the association between a new skeletal loading (SkL) score reflecting physical activity from age 11 to adulthood, the bone specific physical activity questionnaire (BPAQ) and bone microarchitecture in young Black and White men and women. We conducted a cross-sectional study of young ([mean ± SD] 23.7 ± 3.3 years) Black (n = 51 women, n = 31 men) and White (n = 50 women, n = 49 men) adults. Microarchitecture and estimated bone strength (by micro-finite element analysis) were assessed at the ultradistal tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT). Physical activity questionnaires were administered and a SkL score was derived based on ground reaction force, rate of loading, frequency, duration, and life period of participation per activity from age 11 onwards. BPAQ score was also calculated. We used multiple linear regression to determine associations between both SkL score and BPAQ score and bone outcomes, adjusting for age, height, weight, sex, and race. We found that SkL score, which accounts for current and historical physical activity, was significantly associated with most cortical bone parameters at the tibia including area, area fraction, porosity, thickness, and tissue mineral density (R2 = 0.27-0.55, all p < 0.01). Further, trabecular thickness, separation, number, and bone mineral density (R2 = 0.22-0.32, all p < 0.01), as well as stiffness and failure load (R2 = 0.63-0.65, all p < 0.01), were associated with the SkL score. The BPAQ was also significantly associated with most bone parameters, but to a lesser degree than SkL score. These findings suggest that among young adults, greater amounts of osteogenic physical activity, as assessed by the SkL score and BPAQ are associated with improved bone microarchitecture and strength. With the potential to predict bone parameters in young adults, these scores may ultimately serve to identify those most vulnerable to fracture.
Read full abstract