All cellular processes that involve the unwinding of DNA also lead to the systematic shuttling of histones. Histone shuttling across the nuclear membrane is facilitated by a class of proteins known as – histone chaperones. Histone chaperones are classified based on their binding to H3/H4 histones or H2A/H2B histones. During the shuttling process, two types of signals - NLS and NES are recognized by the nuclear transport proteins. However, this is the nuclear transport protein and the mechanism of signal recognition by the protein is still unknown. Thus, in this piece of work, the NLS and NES signals are predicted on important H2A/H2B binding histone chaperones. In addition, cellular localization and potential DNA binding regions of histone chaperones are predicted. Mapping of predicted regions on the histone chaperone’s structure suggested that the critical binding regions mainly lie on the disordered region of the histone chaperones. NLS and NES are present in the N- and C-terminal of the histone chaperones. Most histone chaperones contain bipartiate NLS signals. This article sheds light on the crucial aspect that in addition of being directly engaged in nucleosome synthesis and disassembly in vivo, histone chaperone also performs various specific roles via histone binding activity.
Read full abstract