Autophagy regulates intermittent hypoxia (IH)-induced obstructive sleep apnea-hypopnea syndrome (OSAHS). We investigated the effects of IH and its withdrawal on cognitive function, autophagy, and lysophagy in OSAHS. An OSAHS rat model was established, and rats were divided into five groups: normoxia control, IH-4w (4-week IH), IH-6w (6-week IH), IH-8w (8-week IH), and IH-8w + 4w (8-week IH and 4-week normoxia). The cognitive behavior; mitochondrial and lysosomal morphology of the hippocampal tissue; mitochondrial respiratory function, permeability, and membrane potential; lysosomal function; autophagy- and lysophagy-related protein levels; and hypoxia-associated autophagy gene expression in rats were assessed. The cognitive function of rats in the IH-4w, IH-6w, and IH-8w groups was significantly impaired. In IH-8w cells, mitochondrial function was damaged with swollen morphology and decreased quantity, respiration, permeability, and membrane potential, along with significantly increased mitophagy-related protein ATG5 and LC3II/LC3 levels and decreased p62 levels. Expression of hypoxia-associated autophagy genes Becn1, Hif1, Bnip3, Bnip3l, and Fundc1 was significantly higher in the IH-8w group. Significantly increased LAMP2, CTSB, and ACP2 levels in IH-8w cells further indicated impaired lysosomal function. Lysophagy-related protein LAMP1, LC3II/LC3I, and TFEB levels were significantly increased in the IH-8w group, whereas p62 level was significantly decreased. The above listed evidence indicated damage to the mitochondria and lysosomes, as well as stimulation of mitophagy and lysophagy in IH-treatment OSAHS rat model. After withdrawing IH and culturing for 4weeks in normal conditions, the cognitive function of rats improved, and mitophagy and lysophagy decreased. Our findings indicate that IH impairs cognitive function and promotes mitophagy and lysophagy in an OSAHS rat model, and IH withdrawal recovered the above effects.
Read full abstract